
AP® CALCULUS AB 2006 SCORING GUIDELINES

Question 3

The graph of the function f shown above consists of six line segments. Let g be the function given by

$$g(x) = \int_0^x f(t) dt.$$

- (a) Find g(4), g'(4), and g''(4).
- (b) Does g have a relative minimum, a relative maximum, or neither at x = 1? Justify your answer.

- (c) Suppose that f is defined for all real numbers x and is periodic with a period of length 5. The graph above shows two periods of f. Given that g(5) = 2, find g(10) and write an equation for the line tangent to the graph of g at x = 108.
- (a) $g(4) = \int_0^4 f(t) dt = 3$

$$g'(4) = f(4) = 0$$

$$g''(4) = f'(4) = -2$$

- $3: \begin{cases} 1:g(4) \\ 1:g'(4) \\ 1:g''(4) \end{cases}$
- (b) g has a relative minimum at x = 1 because g' = f changes from negative to positive at x = 1.
- $2: \begin{cases} 1 : answer \\ 1 : reason \end{cases}$
- (c) g(0) = 0 and the function values of g increase by 2 for every increase of 5 in x.

$$g(10) = 2g(5) = 4$$

$$g(108) = \int_0^{105} f(t) dt + \int_{105}^{108} f(t) dt$$
$$= 21g(5) + g(3) = 44$$

$$g'(108) = f(108) = f(3) = 2$$

An equation for the line tangent to the graph of g at x = 108 is y - 44 = 2(x - 108).

4:
$$\begin{cases} 1: g(10) \\ 3: \begin{cases} 1: g(108) \\ 1: g'(108) \\ 1: \text{ equation of tangent line} \end{cases}$$