AP Calculus AB
Name \qquad
Cross Sections Worksheet

1. The base of a solid is bounded by $y=\cos (x)$, the x -axis, $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$. Cross sections perpendicular to the x -axis are squares. Find the volume.
2. The base of a solid is bounded by $y=2-x$, the x-axis, and the y-axis. Cross sections that are perpendicular to the x -axis are isosceles right triangles with the right angle on the x -axis. (Legs perpendicular to the x -axis). Find the volume.
3. The base of a solid is bounded by the semi-circle $y=\sqrt{4-x^{2}}$ and the x -axis. Cross sections that are perpendicular to the x -axis are squares. Find the volume.
4. The base of a solid is bounded by $y=\sqrt{16-x^{2}}$ and the x -axis. Cross sections that are perpendicular to the y-axis are equilateral triangles. Find the volume.
5. The base of a solid is a circular region in the xy-plane bounded by the graph $x^{2}+y^{2}=9$. Find the volume of the solid if every cross section by a plane normal to the x-axis is an equilateral triangle with one side as the base.
6. The base of a solid is circular region in the xy-plane bounded by the graph of $x^{2}+y^{2}=9$. Find the volume of the solid if every cross section by a plane normal to the x-axis is a square with one side as the base.
7. The base of a solid is bounded by $y=2-\frac{1}{2} x$, the x-axis, and the y-axis. Cross sections that are perpendicular to the y-axis are isosceles right triangles with the hypotenuse in the xy-plane. Find the volume.
Answers
8. $\frac{\pi}{2}$
9. $36 \sqrt{3}$
10. $\begin{array}{ll}\frac{4}{3} & 6.144\end{array}$
11. $\frac{32}{3}$
12. $\frac{8}{3}$
13. $\frac{128 \sqrt{3}}{3}$
(1) $y=\cos (x)$

$$
\int_{-\pi / 2}^{\pi / 2}(\cos x)^{2} d x=\frac{\pi}{2} \quad \text { *radian mode! }
$$

(2)

$$
\int_{0}^{2} \frac{1}{2}(2-x)^{2} d x=\frac{4}{3}
$$

$$
\int_{-2}^{2}\left(\sqrt{4-x^{2}}\right)^{2} d x=\frac{32}{3}
$$

(4)

(6)

$$
\int_{-3}^{3}\left(2 \sqrt{9-x^{2}}\right)^{2} d x=144
$$

$$
\begin{array}{r}
\left(\frac{f(x)}{2}\right)^{2}+h^{2}=f(x)^{2} \\
\frac{f(x)^{2}}{4}+h^{2}=f(x)^{2} \\
h^{2}=\frac{3}{4} f(x)^{2} \\
h=\frac{\sqrt{3}}{2} f(x)
\end{array}
$$

$$
-2 y+4
$$

